
Wave front Method Based Path Planning Algorithm for

Mobile Robots

Bhavya Ghai1 and Anupam Shukla2

ABV- Indian Institute of Information Technology and Management, Gwalior, India
1bhavyaghai@gmail.com, 2anupamshukla@iiitm.ac.in

Abstract. Path planning problem revolves around finding a path from start node to goal

node without any collisions. This paper presents an improved version of Focused Wave Front

Algorithm for mobile robot path planning in static 2D environment. Existing wave expansion

algorithms either provide speed or optimality. We try to counter this problem by preventing the

full expansion of the wave and expanding specific nodes such that optimality is retained. Our

proposed algorithm 'Optimally Focused Wave Front algorithm' provides a very attractive

package of speed and optimality. It allocates weight and cost to each node but it defines cost in

a different fashion and employs diagonal distance instead of Euclidean distance. Finally, we

compared our proposed algorithm with existing Wave Front Algorithms. We found that our

proposed approach gave optimal results when compared with Focused Wave Front Algorithm

and faster results when compared with Modified Wave Front Algorithm.

Keywords: Wave Front , Path Planning, Static Environment, Mobile Robot

1 Introduction

Path Planning is one of the key research areas in Dynamic Robotics [3]. Although

the field of robot path planning is more than 30 years old but still it is an active topic

for research. In very raw form, Path planning is moving of the robot from the starting

node to the target node without any collisions. The evaluation criteria for Path

Planning Algorithms may vary from Completeness[1], Computational Complexity[1],

optimality, etc. as per the application. Path Planning can be modeled as a multi

objective optimization problem[8]. Objectives may be to reduce the energy

consumption, path length, execution time, communication delay, etc.[4] Mobile

robots have wide domestic, military and industrial applications[4]. They may be used

for cleaning where they navigate around the entire space[2]. They are widely used in

dangerous environments which may be hazardous for humans such as aerospace

research, mining industry, defense industry, nuclear industry, etc.

 Path Planning algorithms may deal with known/unknown

environments, static/dynamic[6] obstacles, single/multiple robots, 2d/3d space, etc.

Numerous methods are employed to deal with all this problems such as heuristics,

Genetic Algorithms, soft computing, statistical approaches, etc. In our case, we have

dealt with static 2d environment. We have proposed a new approach based on wave

front method. In wave front based methods, values are assigned to each node starting

from target node. It is followed by traversal from start node to target node using the

values assigned. Our major concern is to ensure optimal path length along with faster

execution time. We tried to address this problem by preventing the full expansion of

waves and used a new cost function so that optimality is not compromised. Finally,

we compare our proposed approach with the existing wave front based path planning

algorithms to verify the effectiveness of our proposed algorithm. We used Player

Stage Simulator for testing. Player/Stage is a widely used open source multi robot

simulator which is compatible with multiple platforms [7, 9].

 This paper is organized as follows. Section 2 will discuss about the related

work in this field. Section 3 will discuss about the major wave front based algorithms

and also present our proposed approach (Optimally Focus Wave front Algorithm) to

this problem. Section 4 will discuss about the assumptions and the comparison of our

approach with existing algorithms. Section 5 and 6 contain Conclusion and Future

Work respectively.

2 Related Work

Numerous methods have been employed to solve different aspects of Path Planning

Algorithm such as Heuristics [5], Wave Front Method [1, 3], Genetic Algorithms [11],

Neural Network [12], etc. Some of the common examples include A*, artificial

potential field, D*, etc. Environment for Path Planning algorithms can be modeled as

grid of Polygons. Typically, it is modeled as a rectangular Grid but it also be modeled

as a triangular grid so that the number of directions and hence path length can be

further optimized [2]. Path planning algorithms are of two types based on data

available about environment: static and dynamic. In static path planning, entire

information about obstacles is known beforehand. We have the entire map of the

environment at the beginning then we go for preprocessing based on the map and

starting and goal node positions. The algorithm returns a path and then robot simply

follow the co-ordinates of the path [1, 3]. In case of dynamic Path Planning, Robot is

dependent on its sensors. Only small fraction of information about obstacles is known

in advance. The robot has to take navigation decisions while moving. As the robot

moves and interacts with the environment, more information becomes available about

obstacles. There are many algorithms for dealing with static environment effectively

[1, 11, 12, 13]. In case of dynamic environment obstacles may change their position.

This kind of situation is dealt using sensor information [4, 5, 6].

In case of Wave front algorithms, Robot moves from the source node to target node

based on the waves emitted by the target [3]. In this paper we have purposed a

modified version of Focused Wave Front Algorithm.

3. Proposed Approach

Wave Front algorithm uses breadth first search from the target node to the start node.

In the wave front algorithm values are assigned to each node in increasing order from

target node. The nodes in a wave i.e. nodes at equal distance from the target node are

assigned the same value provided node is not an obstacle. The numbers assigned to

cells in adjacent waves differ by 1. In our case, we have considered that robot can

move in 8 directions so waves are square in shape. The following formula to assign

value to each cell [3]:-

 map(i,j) = {

Here i,j are the co-ordinates on the grid. Neighborhood (i,j) represents the cell

adjacent to the cell (i ,j). In our case, each node will have 8 neighbors. In every

stage each cell who has not got any values will get values. This goes on until all the

nodes in the map are assigned a value. After all nodes are assigned a value, Traversal

from the start node begins towards the target node such that at each step it chooses the

next node with minimum value. This algorithm always provides a path if it exists but

it has two major drawbacks. Firstly, it is very time consuming and computationally

expensive as it needs to explore all nodes i.e. it assigns value to each node. Secondly,

it is possible that two or more nodes in the neighborhood have the same value. Hence,

we have to choose the best path among different possible paths.

 As the name suggests, Modified Wave Front Algorithm is an improved version of

Wave Front Algorithm. The main advantage of MWF over wave front algorithm is

that it returns the best optimal path. Like Wave Front Algorithm, MWF also explores

all nodes and allocates value to each node in increasing order starting from the target

node. The key difference lies in the way it allocates values to each node. MWF

differentiates between orthogonally adjacent and diagonally adjacent nodes. This is

reflected in the following formula:-

 map(i,j) = {

The above formula describes the value allocated to the node with coordinates (i,j).

This algorithm provides a solution if it exists(Completeness) and gives the optimal

solution. The only drawback is that it is very slow as it explores all nodes.

Specifically for bigger maps, it might take long to calculate optimal path.

 Focused Wave Front Algorithm is a further modification to MWF. This algorithm

is quite faster than previous algorithms because it explores only a limited number of

nodes. Each nodes is allocated two values - weight and cost. Weight is the value

assigned to node depending on its position. It is assigned in exactly same fashion as

we allocate values in modified wave front algorithm. Weight can be understood as a

measure of minimum path length of a node from the target node although it may be on

a different scale. If we consider each node to be of unit length and we increment

weight by 3 and 4 between adjacent nodes then weight of a node will be

approximately 3 times of the path length from the target node. Cost of a node is its

Euclidean distance from the start node.

 Initially target node is assigned 0 weight. All its neighbors are assigned weight and

cost value. The node with the minimum cost is expanded until source node is reached.

This algorithm follows a greedy approach whereby it gives priority to those nodes

which are near to start node. It reaches the start node quite swiftly. It is time efficient

but not optimal. It will return a path if it exists although it may suggest a relatively

longer route. It might not be suitable when movement cost is high and optimal path

length is a priority.

 Optimally Focused Wave Front Algorithm (OFWF) is our proposed approach.

Optimal Path length is one of the most important properties sought in Path Planning

Algorithms for a vast number of applications. OFWF is a further modification of

FWF and it returns path with optimal path length. Like FWF, it explores only a

limited number of nodes and hence is quite faster than MWF. FWF focuses on those

nodes which are closer to source node irrespective of its distance from the target node.

Hence, it doesn't provide optimal solution due to its greedy approach. On the other

hand, OFWF weighs distance from the target node and approximate minimum

distance from the start node equally. Weight is assigned in the same way as FWF.

OFWF also expands nodes with minimum cost but cost is defined in a different

fashion. Cost of a node with coordinates (i,j) is defined as follows :-

 Cost(i,j) = Weight(i,j) + heuristic(i,j)

 heuristic(i,j) = 3* ((dx + dy) + (√2 – 2) * Min(dx,dy))

where

 dx = absolute difference of x coordinates of the given node and start node

 dy = absolute difference of y coordinates of the given node and start node

 Min(dx,dy) = returns minimum value between dx and dy

Algorithm:-

 Step 1: insert target node into priority queue

 Step 2: c = pop node from priority queue

 Step 3: if c== start node goto Step 7

 Step 4: assign weight and cost to neighbors of c

 Step 5: insert neighbors of c to priority queue

 Step 6: goto Step 2

 Step 7: traverse from start to target node by choosing the node with least

weight among neighborhood at each step

Internally, Priority queue will arrange the nodes in ascending order based on the

cost of each node. Instead of using Euclidean distance for measuring approximate

minimum distance from start node, we use a variant of diagonal distance which is

better suited in our case as our robot can move in only 8 directions. Since this

algorithm focuses on optimal path, so we decided to call it Optimally Focused Wave

Front Algorithm (OFWF). Firstly, we push target node into priority queue. Then we

allocate weight and cost to its immediate neighbors and push them into priority queue

as well. Then we pop a node from the priority queue and repeat this process until start

node is popped out. Lastly, we traverse from start node to target node by moving to

nodes with least weight among other neighbors.

4. Results

We simulated MWF, FWF, OFWF using Player 3.0.2 and Stage 3.2.2 on Ubuntu

12.04 Platform. We feed the starting and target locations along with the environment

as the input to the algorithm. The algorithm returns the set of x, y co-ordinates of

adjacent cells which will form the path. We have used gray image to represent the 2d

environment where black pixels represent obstacles and white spaces represent the

free region. An image of size P x Q pixels represent a map of P x Q cells.

 We have assumed that robot can move in 8 directions(North, West, East, South,

North-East, North-West, South-East, South- West) and number of obstacles are finite

and static. We have assumed that robot can rotate in clockwise and anti-clockwise

direction, hence robot can rotate 45degree, 90degree, 135degree or 180 degree. We

have used 4 different maps for comparison. In each map the starting node will be the

top left cell and the target node will be the bottom right cell. To measure the total

angle turned, we have considered that in the beginning the robot faces towards north.

Number of explored nodes is the count of all nodes to which weight and cost has been

assigned. We have considered each cell to be of 1 unit length. For every horizontal or

vertical movement, Path length will be incremented by 1 and for each diagonal move

path length will be incremented by √2. We will compare the performance of MWF,

FWF and OFWF based on 6 constraints i.e. Number of Nodes Explored, Number of

Steps, Path Length, Execution Time, Number of turns and total angle turned.

 Map1 Map2 Map3 Map4
Fig.1. Simulation Environment

Table 1: Results for Map1 (200 x 200 pixels)

Parameters MWF FWF OFWF

Nodes Explored 40000 989 994

Number of Steps 199 199 199

Time 3895ms 49ms 53ms

Path Length 281.428 281.428 281.428

Number of Turns 1 1 1

Total angle turned 135 degrees 135 degrees 135 degrees

Table 2: Results for Map2 (40 x 40 pixels)

Parameters MWF FWF OFWF

Nodes Explored 1344 938 405

Number of Steps 75 197 75

Time 120ms 73ms 48ms

Path Length 76.2426 213.154 76.2426

Number of turns 4 27 7

Total Angle Turned 270 degrees 1530 degrees 450 degrees

Table 3: Results for Map3 (200 x 200 pixels)

Table 4: Results for Map4 (200 x 200 pixels)

Parameters MWF FWF OFWF

Nodes Explored 37548 2389 11820

Number of Steps 247 247 247

Time 3550ms 173ms 1095ms

Path Length 309.546 322.801 309.546

Number of turns 4 8 39

Total Angle Turned 270 degrees 540 degrees 1890 degrees

Parameters MWF FWF OFWF

Nodes Explored 28389 8625 14153

Number of Steps 342 373 342

Time 2724ms 807ms 1346ms

Path Length 365.196 418.978 365.196

Number of turns 4 15 11

Total Angle Turned 270 degrees 810 degrees 540 degrees

5. Conclusion

In uncluttered environment such as map1, all algorithms returned optimal results but

MWF took considerably longer than FWF and OFWF. On observing the number of

turns and Total angle turned for Map2, Map3 and Map4, we can deduce that MWF,

FWF and OFWF propose 3 different paths for each case. Based on the observations,

we can approximately compare the performance of OFWF with MWF and FWF.

When we compare OFWF with MWF, we observe that path length and number of

steps is same as both return optimal path length. Execution time and nodes explored is

quite less for OFWF and number of turns and angle turned is better for MWF. When

we compare OFWF with FWF, we observe that FWF execution time and number of

nodes explored is better while path length and number of steps is better for OFWF.

 Among the three, MWF provides the most optimal results in terms of path

length, number of turns and total angle turned. However, it is computationally

expensive and time consuming as it explores a relatively larger number of nodes.

FWF is faster than MWF and OFWF but it compromises optimality for high speed.

OFWF provides results with optimal path length and is a lot faster than the MWF.

OFWF seems as a balanced algorithm which provides optimal path length with good

execution time. If rotation cost is not a major concern, then OFWF may prove to be a

good alternative among other path planning algorithms.

6. Future Work

In the future, Optimally Focused Wave front algorithm may be further modified so

that apart from path length it may also optimize number of turns and total angle

turned. The current algorithm may also be extended to work in 16 directions which

will further optimize path length. The current algorithm might also be modified to

work in unknown environment or with dynamic obstacles.

References

1. Pal, A., Tiwari, R., & Shukla, A.: A focused wave front algorithm for mobile robot path

planning. In Hybrid Artificial Intelligent Systems (pp. 190-197). Springer Berlin Heidelberg.

(2011)

2. Oh, J. S., Choi, Y. H., Park, J. B., & Zheng, Y. F.: Complete coverage navigation of

cleaning robots using triangular-cell-based map. Industrial Electronics, IEEE Transactions

on, 51(3), 718-726. (2004)

3. Nooraliei, A., & Nooraliei, H.: Path planning using wave front's improvement methods.

In Computer Technology and Development, 2009. ICCTD'09. International Conference

on (Vol. 1, pp. 259-264). IEEE (2009)

4. Ganeshmurthy, M. S., & Suresh, G. R.: Path planning algorithm for autonomous mobile

 robot in dynamic environment. In Signal Processing, Communication and Networking

 (ICSCN), 2015 3rd International Conference on(pp. 1-6). IEEE (2015)

5. Guo, X.: Coverage Rolling Path Planning of Unknown Environments with Dynamic

Heuristic Searching. In Computer Science and Information Engineering, 2009 WRI World

Congress on (Vol. 5, pp. 261-265). IEEE (2009)

6. Zelek, J. S.: Dynamic path planning. In Systems, Man and Cybernetics, 1995. Intelligent

Systems for the 21st Century., IEEE International Conference on (Vol. 2, pp. 1285-1290).

IEEE (1995)
7. Biggs, G.,et al.: All the robots merely players: History of player and stage software. Robotics

& Automation Magazine, IEEE, 20(3), 82-90 (2013)

8. Liu, G., et al.: The Ant Algorithm for Solving Robot Path Planning Problem. In: Third

International Conference on Information Technology and Applications (ICITA), pp. 25–27

(2005)

9. Player/Stage Source Forge Homepage, http://playerstage.sourceforge.net

10. Diagonal Distance, http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html#

 diagonal-distance

11. Manikas, W., Ashenayi, K., & Wainwright, R.: Genetic algorithms for autonomous robot

navigation. Instrumentation & Measurement Magazine, IEEE, 10(6), 26-31 (2007)

12. Du, X., Chen, H.-h., Gu, W.-k.: Neural network and genetic algorithm based global path

planning in a static environment. Journal of Zhejiang University SCIENCE 6, 549–554

(2005)

13. Behnke, S.: Local Multiresolution Path Planning. Preliminary version. in Proc. of 7th

RoboCup Int. Symposium, Padua, Italy, pp. 332–343 (2003)

